258 research outputs found

    Nonlinear localized modes at phase-slip defects in waveguide arrays

    Full text link
    We study light localization at a phase-slip defect created by two semi-infinite mismatched identical arrays of coupled optical waveguides. We demonstrate that the nonlinear defect modes possess the specific properties of both nonlinear surface modes and discrete solitons. We analyze stability of the localized modes and their generation in both linear and nonlinear regimes.Comment: 3 pages, 6 figures, submitted to Opt. Let

    A working model of stroke recovery from rehabilitation robotics practitioners

    Get PDF
    We reviewed some of our initial insights about the process of upper-limb behavioral recovery following stroke. Evidence to date indicates that intensity, task specificity, active engagement, and focusing training on motor coordination are key factors enabling efficacious recovery. On modeling, experience with over 400 stroke patients has suggested a working model of recovery similar to implicit motor learning. Ultimately, we plan to apply these insights in the development of customized training paradigms to enhance recovery

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has shown that body weight support (BWS) has the potential to improve gait speed for individuals post-stroke. However, body weight support also reduces the optimal walking speed at which energy use is minimized over the gait cycle indicating that BWS should reduce walking speed capability.</p> <p>Methods</p> <p>Nonimpaired subjects and subjects post-stroke walked at a self-selected speed over a 15 m walkway. Body weight support (BWS) was provided to subjects at 0%, 10%, 20%, 30%, and 40% of the subject's weight while they walked overground using a robotic body weight support system. Gait speed, cadence, and average step length were calculated for each subject using recorded data on their time to walk 10 m and the number of steps taken.</p> <p>Results</p> <p>When subjected to greater levels of BWS, self-selected walking speed decreased for the nonimpaired subjects. However, subjects post-stroke showed an average increase of 17% in self-selected walking speed when subjected to some level of BWS compared to the 0% BWS condition. Most subjects showed this increase at the 10% BWS level. Gait speed increases corresponded to an increase in step length, but not cadence.</p> <p>Conclusions</p> <p>The BWS training environment results in decreased self-selected walking speed in nonimpaired individuals, however self-selected overground walking speed is facilitated when provided with a small percentage of body weight support for people post-stroke.</p

    Agrin Binds BMP2, BMP4 and TGFβ1

    Get PDF
    The C-terminal 95 kDa fragment of some isoforms of vertebrate agrins is sufficient to induce clustering of acetylcholine receptors but despite two decades of intense agrin research very little is known about the function of the other isoforms and the function of the larger, N-terminal part of agrins that is common to all isoforms. Since the N-terminal part of agrins contains several follistatin-domains, a domain type that is frequently implicated in binding TGFβs, we have explored the interaction of the N-terminal part of rat agrin (Agrin-Nterm) with members of the TGFβ family using surface plasmon resonance spectroscopy and reporter assays. Here we show that agrin binds BMP2, BMP4 and TGFβ1 with relatively high affinity, the KD values of the interactions calculated from SPR experiments fall in the 10−8 M–10−7 M range. In reporter assays Agrin-Nterm inhibited the activities of BMP2 and BMP4, half maximal inhibition being achieved at ∼5×10−7 M. Paradoxically, in the case of TGFβ1 Agrin N-term caused a slight increase in activity in reporter assays. Our finding that agrin binds members of the TGFβ family may have important implications for the role of these growth factors in the regulation of synaptogenesis as well as for the role of agrin isoforms that are unable to induce clustering of acetylcholine receptors. We suggest that binding of these TGFβ family members to agrin may have a dual function: agrin may serve as a reservoir for these growth factors and may also inhibit their growth promoting activity. Based on analysis of the evolutionary history of agrin we suggest that agrin's growth factor binding function is more ancient than its involvement in acetylcholine receptor clustering

    Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality

    Get PDF
    Background: There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a) to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b) to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. Methods: Forty-seven patients with thalamic haemorrhage were included in the '' Sagrat Cor Hospital of Barcelona Stroke Registry '' during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT) scans and/or magnetic resonance imaging (MRI) of the brain. Results: Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420) and 13% of intracerebral haemorrhage (n = 364). Hypertension (53.2%), vascular malformations (6.4%), haematological conditions (4.3%) and anticoagulation (2.1%) were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9). Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56), intraventricular involvement (OR = 24.74) and age (OR = 1.23), were independent predictors of in-hospital mortality. Conclusion: One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome

    Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation

    Get PDF
    Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients

    Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals

    Get PDF
    Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touchscreen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touchscreen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman\u27s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress
    • …
    corecore